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Abstract

With an increasing prevalence of mild cognitive impairment (MCl) and Alzheimer’'s disease (AD) in response to an
aging population, it is critical to identify and understand neuroprotective mechanisms against cognitive decline. One
potential mechanism is redundancy: the existence of duplicate elements within a system that provide alternative
functionality in case of failure. As the hippocampus is one of the earliest sites affected by AD pathology, we
hypothesized that functional hippocampal redundancy is protective against cognitive decline. We compared
hippocampal functional redundancy derived from resting-state functional MRI networks in cognitively normal older
adults, with individuals with early and late MCl, as well as the relationship between redundancy and cognition.
Posterior hippocampal redundancy was reduced between cognitively normal and MCI groups, plateauing across early
and late MCI. Higher hippocampal redundancy was related to better memory performance only for cognitively normal
individuals. Critically, functional hippocampal redundancy did not come at the expense of network efficiency. Our

results provide support that hippocampal redundancy protects against cognitive decline in aging.

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
that poses a significant public health concern, with
dementia constituting the fifth leading cause of death
worldwide'. AD is characterized by the accumulation of
amyloid B-plaques and neurofibrillary tau-tangles, which
disrupt neural communication and contribute to func-
tional and structural changes across the brain®. These
pathologies aggregate during healthy aging and continue
into mild cognitive impairment (MCI), regarded as a
precursor stage to AD’. Although individuals diagnosed
with MCI are more likely to later progress to AD, there is
considerable variability in individual trajectories, with
conversion estimates ranging from 8% to 25%”. In addi-
tion, the prevalence of biologically defined AD (diagnosed
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post-mortem) is up to three times higher than clinically
defined AD, illustrating that a high proportion of older
adults are presenting normal cognitive function, despite
extensive neural pathology”’. This suggests that in certain
individuals, neuroprotective mechanisms allow the brain
to cope with early neurodegeneration and retain normal
cognitive function. With an increasing aging population, it
is critical to identify the mechanisms that mitigate cog-
nitive decline, yet these mechanisms are currently not well
understood.

The general notion of reserve has been introduced to
refer to the difference between the extent of brain damage
and its outward presentation (clinically or cognitively)®~®,
Thus, individuals with more reserve exhibit a resilience to
or temperance of physical brain damage®™®. Reserve
mechanisms in the brain are difficult to quantify. One
potential quantifiable reserve mechanism is redundancy:
the existence of duplicate elements within a system that
provide alternative functionality in case of failure®'°. This
design principle is abundant in engineering fields, where
redundant elements protect a design from total failure in
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the event of malfunction of a specific element''. Redun-
dancy exists in biological systems as well, with examples
in genetic structures and cells, up to the level of whole
organslo’u’ls. For example, recent work has demonstrated
that redundant elements are effective at preserving func-
tioning in the event of gene deletions'® and providing
robustness in neural networks'®. As physical redundancy
is not a requirement to support informational or func-
tional redundancy', functional redundancy can be cal-
culated from a graph-based representation of functional
brain networks'>'®. Numerous studies have derived
graph-based measures and topological properties from
resting-state functional magnetic resonance imaging (rs-
fMRI) data, in which systems are represented as a col-
lection of nodes (brain regions) and edges (correlated
time-series data)'”~'°. This approach has recently been
employed to analyze functional redundancy in young
adults, quantified as the sum of direct and indirect paths
between any pair of nodes'>*®. Similar approaches have
been used to quantify redundancy in other biological
networks, leading to the consideration that path redun-
dancy (the presence of multiple paths between a pair of
nodes) is an important contributor to robustness of cel-
lular networks®®. However, although the role of redun-
dancy in neuroprotection has been postulated before'>*,
it has not yet been formally quantified to date for studying
neuroprotection in neurodegenerative diseases.

It remains unknown, therefore, if redundancy is neu-
roprotective against age-related cognitive decline. A
plausible site where neuroprotective functional redun-
dancy may be detected is the hippocampus. This medial
temporal lobe structure, critical for memory processes, is
among the earliest sites affected by AD pathology””.
Functional and structural alterations in the hippocampus
are early and precede the onset of AD? and MCI is
characterized by declines in memory and hippocampal
functioning®. We thus reasoned that hippocampal func-
tional redundancy may serve as a neuroprotective
mechanism to outward clinical presentation of MCI, such
that in a redundant network, communication could con-
tinue even in the presence of neurodegeneration of a node
(e.g., hippocampus) (Fig. 1A). Conversely, communication
within a less redundant network should be severely dis-
rupted in the presence of neurodegeneration'’ (Fig. 1A).

The current study investigates functional redundancy in
130 cognitively normal (CN), early MCI (eMCI), and late
MCI (IMCI) older adults (Fig. 1B) across four anterior and
posterior hippocampal nodes (Fig. 1C), to elucidate how
functional redundancy is associated with healthy (or
asymptomatic) and pathological aging. Three potential
relationships between redundancy and cognitive status
were considered as follows: (a) no relationship between
redundancy and cognitive status (i.e., redundancy is not a
neuroprotective mechanism), (b) redundancy declines
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linearly with cognitive status (i.e., redundancy is protec-
tive in both healthy and pathological aging), or (c)
redundancy declines from healthy to pathological aging,
but plateaus upon reaching MCI (ie, redundancy is
neuroprotective in healthy or asymptomatic aging, but
ceases to offer functional benefits upon appearance of
neurodegeneration) (Fig. 1D). We hypothesize that func-
tional redundancy will be related to diagnosis, such that
CN individuals will have greater redundancy than those
with MCI. Further, if redundancy acts as a neuroprotec-
tive mechanism, then we hypothesize that higher redun-
dancy will be related to better cognitive performance.

Materials and methods
Dataset

Data were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu), a longitudinal multi-site study launched in 2003 and
led by Principal Investigator Michael W. Weiner, MD. For
up-to-date information, see www.adni-info.org. Subjects
were participants of the ADNIGO/2 protocol, which
distinguishes between a diagnosis of eMCI and IMCI, and
includes rs-fMRI data. Study visits were approved by each
site’s local Institutional Review Board. All participants
provided informed consent. The following inclusion cri-
teria were established by ADNI:

MCI subjects: subjective memory concern, clinical
dementia rating (CDR) of 0.5, Mini-Mental State Exam
(MMSE) score between 24 and 30, an abnormally low
score on the Wechsler Memory Logical Memory II sub-
scale (LM-II), no significant levels of impairment in other
cognitive domains, preserved activities of daily living,
non-demented.

Early MCI: LM-II score between 9 and 11 for >16 years
of education, 5-9 for 8—15 years of education, 3—-6 for 0-7
years of education.

Late MCI: LM-II score <8 for 216 years of education,
<4 for 8-15 years of education, <2 for 0-7 years of
education.

CN subjects: no subjective memory concern, CDR of 0,
MMSE scores between 24 and 30, scores on LM-II within
the expected range (29 for 16 or more years of education,
>5 for 8—15 years of education, 23 for 0-7 years of edu-
cation), no reported memory complaints, non-depressed,
non-MCI, non-demented.

The distinction between early and late MCI was deter-
mined by ADNI via the extent of low performance on the
LM-II subscale, such that an eMCI diagnosis was made
for scores about 1 SD below the education adjusted norm,
and a IMCI diagnosis for scores about 1.5 SD below the
education adjusted norm, in addition to meeting the
above MCI criteria®®, In an independent sample, partici-
pants classified as eMCI displayed less severe cognitive
impairment and a slower rate of progression than those
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Fig. 1 Study design and hypotheses. A Examples of networks with high and low redundancy. The shortest path between nodes j, j do not differ
between high and low redundancy in a healthy state. In the case of neurodegeneration (red nodes), a highly redundant network retains a path
between nodes j, j, whereas there are no paths between nodes j, j in a low redundancy network. B Sample characteristics of the included subjects.
C Representation of the functional parcellation used in the current study made up of 300 nodes representing cortical, subcortical, and cerebellar
. The four hippocampal nodes are shown next to the full atlas parcellation, representing anterior (cyan) and posterior (blue) hippocampus.
D Three hypothesized relationships between redundancy and cognitive decline. There could be no relationship between redundancy and cognitive
decline (gray line), a linear relationship such that redundancy declines linearly across healthy aging, early MCl, and late MCl states (blue line), or a
nonlinear relationship, such that redundancy declines between healthy aging and MC|, but plateaus in MCl (red line). Redundancy equation
presented above hypothesized relationships, in which redundancy, R, of node pair i} is represented by the sum of all paths between j; at length /, up
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classified as IMCI®. Participants were included in the
current study if (1) they had a diagnosis of either CN,
eMCI, or IMCI; (2) they were between 60 and 90 years
old; (3) they had rs-fMRI and anatomical MRI collected
on the same day; and (4) the images were collected using a
3 Tesla scanner. The first available scan that met these
criteria was used for each subject. All participants that
met these criteria were included in the study (n = 143).

Image acquisition and preprocessing

Structural magnetization-prepared rapid gradient echo
and rs-fMRI images were collected on a Philips Intera
3 Tesla scanner. Functional images were collected using a
grandient echo pulse sequence (flip angle =80, slice
thickness =3.31 mm, echo time=30ms, repetition

time = 3000 ms). Participants were instructed to keep
their eyes open during resting-state scans.

Preprocessing steps were implemented in the MATLAB
(R2017b) Conn toolbox (conn18b)®®. Structural images
underwent segmentation of gray matter, white matter,
and cerebrospinal fluid. Functional images were pre-
processed by realignment and unwarping, slice-timing
correction, co-registration to structural images, spatial
normalization, and motion outlier identification. White
matter, cerebrospinal fluid, and 12 subject-motion para-
meters were included as nuisance regressors. Temporal
band-pass filtering was employed to remove blood-
oxygen-level dependent signal frequencies below
0.008 Hz or above 0.09 Hz. Outlier volumes were defined
as having greater movement than 1.5 mm or a Z threshold
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of 7. Subjects with >50% of volumes removed were
excluded from subsequent analyses (# = 13), resulting in a
final sample of 130 subjects.

Matrix construction and calculations of network measures

Functional time series were obtained using a func-
tionally defined parcellation of 300 non-overlapping
spherical regions of interest (ROIs)*°, including sub-
stantial cortical, subcortical, and cerebellar coverage
(Fig. 1C; coordinates available at https://wustl.app.box.
com/s/twpyb1pflj6vrlxgh3rohyqanxbdpelw). Unweighted
functional connectivity matrices were constructed for
each subject with edges representing correlations
between each ROI, by Fisher Z transformation and
binarizing at thresholds selected for densities ranging
from the top 2.5-25% of edges retained in each individual
network.

Redundancy

A redundancy matrix (R) was calculated for each node
pair from each subject’s connectivity matrix, defined as
the sum of the direct and indirect edges between any two
nodes (i, j), where [ represents the total allowed path
length and L represents the maximum path length (set
to 4, in line with previous work'® and computational
demands):

R(ivj) = Zp<i7j> l)
=1

The four hippocampal nodes of the parcellation were a
priori defined as the main ROIs in this study: left and right
anterior, along with the left and right posterior hippo-
campus. Redundancy was calculated between each hip-
pocampal ROI and all other nodes (i.e., the average R-
value for the 299 ROI-node pairs). Five additional regions
were identified for secondary analysis, focused on nodes
within two functional networks affected in early AD: the
default mode and frontoparietal networks®’ (see Supple-
mentary Methods).

Degree

Unweighted degree was calculated for each hippo-
campal ROJ, j, defined as the sum of all its binarized edges,
where d;; represents the edge between nodes i and j.

k,' = zn:dl'd'
j=1

Global efficiency

Global efficiency, Egoba, Was calculated from each
subject’s binarized connectivity matrix, defined as the
inverse of the shortest path length between two nodes
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(i, j), where n is the total number of nodes in the graph
and L;; is the length of the shortest path between i and ji:

r 1 1
lobal — — % T
globa I’l(l’l — 1) iAjAjziLi’j

Cognition

We selected two cognitive domains that vary in the
strength of their association with pathological aging:
memory, the earliest reported cognitive deficit in MCI,
and executive function, in which deficits are observed in
later disease stages®®. These were represented by com-
posite measures MEM and EF, respectively”>®® (see
Supplementary Methods).

Participant characteristics

The final sample included 130 subjects in rs-fMRI
analyses (39 CN, 54 eMCI, 37 IMCI; Fig. 1B). The groups
did not differ in age, F(2,127) =2.07, p=0.130, or sex,
)(2(2) =4.04, p =0.133. The groups differed in education,
F(2,127) = 3.41, p = 0.036, such that the IMCI group had
more years of education than the eMCI group, p =0.036
(CN-eMCI p =0.202, CN-IMCI: p = 0.734). Of this sam-
ple, 118 (37 CN, 50 eMCI, and 31 IMCI) had cognitive
data within 3 months of their scan date and were included
in the cognition analyses. Within this subset, the groups
did not differ in age, F(2,115) = 2.66, p = 0.074, education,
F(2, 115) = 2.47, p = 0.089, or sex, y*(2) = 1.52, p = 0.468.
The early and late MCI groups did not differ in percen-
tage of amyloid-positive subjects, y*(1) = 0.16, p = 0.686,
95% confidence interval (95% CI) [—0.17, 0.31] (see
Supplementary Methods).

Statistical analysis

Analyses were performed at all matrix densities (2.5% to
25%) and on the values averaged across densities. For
brevity, results are reported in-text and in figures using
the average across densities; results for each individual
density are reported in the Supplementary Materials.
Statistical analyses were run using R and MATLAB using
raw data. Data were normalized for visualization.

Group comparisons

Permutation tests were used for group comparisons of
graph measures, as they do not make assumptions about
the distribution of the data and are more robust to non-
normality than are parametric tests. Group comparisons
were tested using the aovperm function from the per-
muco R package, which conducts analysis of covariance
(ANCOVA) using permutation testing®'. Three-group
omnibus tests were first computed using redundancy or
degree as the dependent variable, group as the indepen-
dent variable, and education as a covariate. Each test was
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run using 10,000 permutations and a significance level of
p <0.05. Significant tests were followed by post hoc tests
using the permutation analysis of variance (ANOVA) for
each pairwise group comparison with 10,000 permuta-
tions. Education was only included as covariate in
eMCI-IMCI comparisons, as the other groups did not
differ in years of education. Multiple comparisons in post
hoc testing were corrected for using the Benjamini and
Hochberg procedure to reduce false discovery rate using
the p.adjust R function. Cohen’s d and 95% ClIs were
calculated using the effsize R function for pairwise
comparisons™?,

Group differences in overall functional connectivity,
white matter hyperintensities, and cognition were ana-
lyzed separately using a one-way ANOVA implemented
with the aov R function, with a significance level of p <
0.05. Significant omnibus tests were probed using Tukey’s
post hoc honest significant difference test using the
TukeyHSD R function, which adjusts the p-values for
multiple comparison testing at a significance level of p <
0.05. Education was included as a covariate in overall
functional connectivity analyses, and age and education
were included as covariates in white matter hyperintensity
analyses, due to group demographic differences in the
respective samples.

Nodal ratios

To quantify the magnitude of differences in redun-
dancy between each group, pairwise nodal ratios were
computed by dividing the average redundancy, R, of
node i in one group by the average R of i in a second
group. Redundancy of node i is the sum of its row in the
redundancy matrix. This value was averaged to create a
group-mean nodal redundancy value for each of the
groups, which was then used to compute the ratio. This
was done for all 300 nodes for each pairwise group
comparison. For example, the average redundancy of
each node for the CN subjects was divided by the
redundancy of each node for the eMCI subjects, result-
ing in a CN: eMCI ratio for each of the 300 atlas nodes,
such that a ratio of 1 indicates equivalent redundancies
and a ratio >1 indicates higher redundancy in CN than in
eMCI. This process was repeated for CN:IMCI and
eMCI : IMCI comparisons. To test the significance of the
posterior hippocampal nodal ranks, left and right pos-
terior hippocampal ratios were averaged to create one
posterior hippocampal ratio for each group ratio set and
compared to the average ratio of a null distribution of
random node pairs in each set, excluding posterior
hippocampus (total: 10,000 random node pairs).

Redundancy regressions
Linear regressions were implemented using the Im R
function, with redundancy as the independent variable
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and either cognition or global efficiency as the dependent
variable, first collapsing across group, followed by within-
group regressions. MEM and EF were regressed separately
on hippocampal redundancy. Global efficiency was
regressed on hippocampal redundancy, with education
included as a covariate in the full sample regression.
Hippocampal redundancy was regressed on MMSE within
the MCI subjects to provide an alternate measure of MCI
progression. Standardized Ps are reported for all regres-
sion output. Due to the non-normality of the redundancy
data, analyses were repeated using robust regression using
Huber weights with the rlm function from the MASS R
package®®, with a Wald’s test of significance using the f.
robftest function from the sfsmisc R package®*.

Results
Lower hippocampal redundancy in MCI

We first compared hippocampal redundancy across
healthy and pathological aging using an omnibus
ANCOVA permutation test (Fig. 2A, Supplementary
Fig. S1, and Supplementary Tables S1-3). Neither left nor
right anterior hippocampal nodes significantly differed by
group [left: F(2,126) =1.43, p = 0.250; right: F(2, 126) =
2.15, p = 0.125]. Conversely, both posterior hippocampal
nodes significantly differed by group [left: F(2,126) = 4.84,
p=0.009; right: F(2, 126) =5.22, p=0.004]. Post hoc
tests revealed greater redundancy in the CN group as
compared to either MCI group in both left [eMCI: F(1,91)
=7.76, p=0.014, Cohen’s d =0.59, 95% CI (0.16, 1.01);
IMCI: F(1,74) =4.67, p=0.048, d=0.50, 95% CI (0.03,
0.96)] and right [eMCL F(1,91) =9.00, p =0.011, d =
0.63, 95% CI (0.20, 1.06); IMCI: F(1,74) = 6.21, p = 0.021,
d=0.57,95% CI (0.11, 1.04)] posterior hippocampus. The
MCI groups, on the other hand, did not differ in posterior
hippocampal redundancy [left: F(1,88) =0.09, p =0.771,
d=0.05, 95% CI (—0.48, 0.37); right: F(1,88) = 0.02, p =
0.893, d = 0.03, 95% CI (—0.45, 0.39)].

To probe the relative importance of the observed
group differences in hippocampal redundancy, we cal-
culated between-group nodal redundancy ratio sets
(CN:eMCI, CN:IMCI, eMCI:IMCI), thereby identify-
ing the nodes with the greatest magnitude of group
differences (top 20 presented in Fig. 2B). Posterior
hippocampal nodes consistently appeared in the top 5%
of nodes in the CN:eMCI and CN:IMCI sets across
network densities (Supplementary Figs. S2-4). Left
posterior hippocampus had the second highest ratio in
the CN:eMCI set and the sixth highest ratio in the
CN:IMCI set, indicating that not only does posterior
hippocampal redundancy significantly differ between
CN and MCI groups, but that posterior hippocampus
has some of the largest differences across all nodes
between CN and MCI groups. Indeed, posterior hippo-
campal ratios were significantly higher than the random
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node ratios in both the CN:eMCI set (MposteriorHc =
1.76, SE . andom = 0.002,

S

random = 1.15,

set (Mposterior]—[C = 1«66» Mrandom =1.20, SErandom =

0.002, p =0.017). The posterior hippocampus ratio did
not differ from the random nodes in the eMCI : IMCI set
(MposteriorHC =0.95, Miandom = 1.06, SE qndgom = 0.001,

p=0.001;
Fig. 2C and Supplementary Table S4) and the CN : IMCI

p =0.831), supporting the finding that posterior hip-
pocampal redundancy was less central for comparisons
across MCI stages.

Although our analysis divided MCI into two groups
based on LM-II scores, other ways exist to formalize MCI
progression. Therefore, we additionally assessed the
association between hippocampal redundancy and MMSE
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scores within the MCI participants. MMSE was not
related to hippocampal redundancy in any of the four
hippocampal nodes (lowest p=0.204; Supplementary
Fig. S5 and Supplementary Tables S5—6), consistent with
the absence of group differences between early and IMCI.

To further validate the specific role of hippocampal
redundancy in cognitive aging, we analyzed a set of
frontal, temporal, and parietal nodes to determine whe-
ther the observed effects were widespread across cortical
regions affected in early AD*” (Fig. 2D). Redundancy did
not differ by group in any of the selected regions (lowest
p =0.097), suggesting this effect was, for the most part,
unique to the hippocampus (Figs. 2E, Supplementary Fig.
S6, and Supplementary Tables S7-8).

Hippocampal redundancy is related to memory but not EF
We sought additional evidence of a protective role of
redundancy in aging from the relationship between cog-
nitive performance and redundancy, hypothesizing that
functional redundancy would be associated with a cog-
nitive benefit. The groups significantly differed in MEM
scores [F(2, 115) = 24.60, p < 0.001, (Fig. 3A)], such that
the CN group (M =1.01, SD =0.55) had higher scores
than the eMCI group (M = 0.47, SD = 0.58, p < 0.001, 95%
CI [—0.83, —0.25]) and the IMCI group (M = 0.07, SD =
0.53, p<0.001, 95% CI [-1.26, —0.62]), and the eMCI
group had higher scores than the IMCI group (p = 0.006,
95% CI [—0.70, —0.10]). We initially collapsed our sample
into a single group to examine the overall relationship
between cognition and redundancy, focusing on posterior
hippocampal redundancy due to its consistency in group
difference analyses and prominence in nodal rankings.
Both left and right posterior hippocampal redundancy
were related to higher MEM scores (Fig. 3B, C, Table 1,
and Supplementary Figs. S9-10). Although the results
reveal an overall effect of higher redundancy relating to
better memory performance, we performed separate
regressions by group as this relationship could differ
based on cognitive status. The positive relationship
between MEM and left hippocampal redundancy was
retained in the CN group but not in either MCI group
(Fig. 3B, C insets, Supplementary Fig. S7, Table 1, and
Supplementary Table S9). In the right hippocampus, only
the eMCI group showed a positive relationship, but sig-
nificance was inconsistent across densities (Supplemen-
tary Fig. S7, Table 1, and Supplementary Table S10).
This analysis process was repeated for EF. The groups
differed in EF scores [F(2, 115) = 3.69, p = 0.028, (Fig. 3D)],
such that the CN group (M =0.78, SD =0.77) had higher
scores than the IMCI group (M = 0.22, SD =0.97, p = 0.021,
95% CI [—1.06, —0.07]), but did not differ from the eMCI
group (M =049, SD=0.84, p=0.245 95% CI [-0.74,
0.14]). The two MCI groups did not differ from each other
(»=0.370, 95% CI [—0.73, 0.20]). Posterior hippocampal
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redundancy was not related to EF scores in our full sample,
nor in any group (Fig. 3E, F, Supplementary Fig. S7, Table 1,
and Supplementary Tables S11-12). Results for both MEM
and EF were consistent when using robust regression
methods (Supplementary Table S13), suggesting the results
were not driven by outliers.

Specificity of redundancy as a topological property

As the redundancy measure includes paths of length-1
(i.e., direct connections), we next examined whether
similar group differences would be observed using only
these length-1 paths by way of node degrees (e.g., whether
the inclusion of indirect paths is informative). No sig-
nificant group differences were observed for any of the
hippocampal nodes [left anterior: F(2, 126) =0.94, p =
0.390; right anterior: F(2, 126)=0.80, p=0.455; left
posterior: F(2, 126) = 2.74, p = 0.071; right posterior: F(2,
126) =0.90, p=0.413; Fig. 4A and Supplementary
Table S14].

Groups were compared on overall functional con-
nectivity for each of the hippocampal nodes to ensure
graph measures were not biased due to underlying func-
tional connectivity differences® (see Supplementary
Methods). No group differences were found when
retaining only positive correlations [left anterior: F(2,
126) = 1.15, p=0.319; right anterior: F(2, 126) =1.68,
p=0.191; left posterior: F(2, 126) = 2.58, p = 0.080; right
posterior: F(2, 126) =1.31, p=0.274], or when taking
the absolute value of all correlations, [left anterior: F(2,
126) = 0.55, p=0.580; right anterior: F(2, 126) =0.72,
p = 0.489; left posterior: F(2, 126) = 0.39, p = 0.679; right
posterior: F(2, 126) = 0.05, p = 0.954].

In addition, there were no group differences in total
volume of white matter hyperintensities, F(2, 109) = 0.31,
p=0.737, nor did volume of white matter hyper-
intensities relate to hippocampal redundancy in any of the
four ROIs (Supplementary Table S15). Together, these
results suggest that the redundancy measure provides
valuable and specific information differentiating CN and
MCI individuals.

Redundancy does not come at the cost of efficiency

Our final analysis examined whether the existence of
redundant edges in brain networks is associated with
compromised communication efficiency within the net-
work, measured by global efficiency. There was no sig-
nificant relationship between global efficiency and
redundancy in any of the hippocampal nodes when
collapsing across group [left anterior: S=-0.17,
p =0.061, adjusted R* = 0.02; right anterior: = —0.03,
p=0.766, adjusted R>=0.01; left posterior: = 0.07,
p =0.411, adjusted R?=0.003; right posterior: = 0.05,
p=0.573, adjusted R* = 0.01] (Fig. 4B and Supplementary
Table S16), suggesting that efficient network
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Table 1

Posterior hippocampal redundancy-cognition regressions for averaged density.
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\.

communication is not compromised by having high func-
tional redundancy. We further probed redundancy-
efficiency relationships within each group, finding no sig-
nificant relationships in either the CN or IMCI groups

(Fig. 4B and Supplementary Tables S17—S19). There was a
positive relationship between global efficiency and left
posterior hippocampal redundancy in the eMCI group,
p=032, p=0017, adjusted R*=0.09. Results were
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consistent using robust regression methods (Supplemen-
tary Table S20).

Discussion

Certain individuals exhibit normal cognition despite
harboring the characteristic pathology of AD and other
dementias®>*?, yet mechanisms of neuroprotection in the
human brain remain elusive and difficult to quantify. Early
work postulated that redundancy may exist in the brain,
but it could not be quantified with the contemporary
methods'?. In the current study, we quantified functional
redundancy in healthy older adults and those with either
early- or late-stage MCI to test whether redundancy acts
as a neuroprotective mechanism against pathological
aging. Consistent with previous reports of beneficial
redundancy in biological systems'*'*, we found evidence
that redundancy serves a neuroprotective role in cognitive
aging. Specifically, healthy older adults showed higher
posterior hippocampal redundancy than individuals with
MCI, and posterior hippocampal redundancy was posi-
tively related to memory performance, with this associa-
tion primarily driven by the cognitively intact group. The
MCI groups did not differ in levels of hippocampal
redundancy nor did they exhibit relationships between
redundancy and cognition, thereby supporting the con-
clusion that redundancy incurs a neuroprotective benefit
in healthy (and possibly asymptomatic) aging, which pla-
teaus in symptomatic pathological aging (Fig. 1D, red line).
Further, we found no group differences in temporal, par-
ietal, or frontal cortical nodes, suggesting these results are
mostly specific to the hippocampus.

We found a clear distinction between anterior and
posterior hippocampus, such that only posterior hippo-
campus consistently differentiated healthy aging from
MCI. This distinction may be explained by the functional
specialization along the long-axis of the hippocampus. As
established in the rodent literature, dorsal (posterior in
primates) hippocampus underlies memory processes, and
ventral (anterior in primates) hippocampus is involved in
emotional processing. The anatomical connectivity of
these regions supports this functional segregation, with
ventral hippocampus connecting to the amygdala and
dorsal hippocampus connecting to retrosplenial and
anterior cingulate cortices®®. This distinction is further
supported by a prominent memory theory®, differ-
entiating between a posterior medial and an anterior
temporal functional network in humans, which largely
overlap with the previously described structural connec-
tions®®. Relatedly, posterior, but not anterior, hippo-
campal nodes clustered with the default mode network
(DMN) in the parcellation employed in the current
study”®. The DMN has considerable overlap with the
proposed posterior medial network®® and exhibits func-
tional deficits in the context of aging and AD**~*?, thereby
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supporting our primary findings in posterior rather than
anterior hippocampus.

In addition to group differences in redundancy, we
found that posterior hippocampal redundancy is related
to memory performance. This relationship held in both
our full sample and in healthy older adults but not in
either MCI group. It is possible that the MCI groups, as
they on average have lower redundancy than the CN
group, may not exhibit enough hippocampal redundancy
to benefit performance. Another interpretation is that the
relationship between redundancy and cognition differs
across groups. Although neither reached significance, the
eMCI group had a positive memory-redundancy rela-
tionship, unlike the IMCI group that exhibited a negative
relationship. Future work should probe whether there is
an amount of redundancy that is necessary to benefit
cognition or if redundancy rather becomes a hindrance in
later disease stages. We did not find any relationship
between hippocampal redundancy and EF. Although
hippocampal function has been associated with a range of
cognitive processes™, its role is particularly critical to
mnemonic processes***®. This dissociation, then, indi-
cates a selective cognitive benefit of nodal functional
redundancy, which can be further explored in other brain
regions (e.g., prefrontal cortex and EF).

Taken together, these results provide support for redun-
dancy as a quantifiable neuroprotective mechanism, but
further research is needed to satisfactorily describe its role
as either a reserve or compensatory mechanism®’. Reserve
encompasses both structural and functional properties of
the brain accumulated over time that support cognitive or
clinical function in the event of damage, as opposed to a
compensatory mechanism that reacts in response to
damage®®. We would expect increased redundancy in MCI
if it acted as compensatory response; rather, we observed a
benefit in healthy aging, suggesting it serves as a reserve
mechanism. AD-type pathology is already present in heal-
thy aging and MCI stages, particularly in the hippocampus®;
aging individuals with more reserve (e.g., redundancy) are
likely to show better cognitive outcomes, and therefore
exhibit resilience to that damage. However, it is possible
that redundancy increases for some individuals in healthy
aging as a compensatory response to the accumulation of
early pathology, which does not occur in individuals who
are subsequently diagnosed with MCI or AD. Lifespan or
longitudinal studies can provide additional evidence to
elucidate its exact role.

Several limitations exist in this study. Although our
results suggest a cognitive benefit of functional redun-
dancy, our data were cross-sectional, limiting our claims
about the progression of redundancy during the course of
aging. Future studies should investigate longitudinally and
probe the potential difference in anterior and posterior
hippocampal redundancy in differentiating stages of
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healthy and pathological aging, as later stages of MCI and
AD may be expected to differ from healthy controls in
anterior-based mnemonic processes*®*’. In fact, our
results demonstrated anterior hippocampal nodes are
consistently among the highest 5% of nodal ratios
between MCI groups. However, we did not observe sig-
nificant group differences. The definition of early and late
MCI used here, adopted from the ADNI protocol, may
have precluded our ability to observe differences between
MCI stages. The early versus late distinction is deter-
mined solely on performance on the LM-II, which could
be affected by factors other than later stage cognitive
decline (e.g., fatigue, concentration, practice effects)***°.
However, we have no reason to believe these factors
would differentially affect the groups, and we did not find
a relationship between hippocampal redundancy and
MMSE scores in MCI. Recently, it was proposed that an
accurate staging of MCI and AD progression can be
achieved through a combination of amyloid-f, tau, and
neurodegenerative markers”. The shift from staging MCI
based on symptomatic markers to biological markers
should be considered in future investigations.

In conclusion, we found that posterior hippocampal
redundancy is greater in healthy or asymptomatic older
adults than in individuals with MCL Our data suggest a
decrease in redundancy between healthy aging and MCI,
upon which the amount of redundancy plateaus and no
longer provides a functional advantage. Further, higher
amounts of hippocampal redundancy are related to better
memory performance. Although previous discussions of
redundancy have been wary of a trade-off with efficiency'?,
we did not observe any reduction in efficiency as a result of
hippocampal redundancy. These data provide novel and
promising quantitative support that redundancy acts as a
neuroprotective mechanism in cognitive aging.

Acknowledgements

We thank Dr. Fabrizio De Vico Fallani for sharing with us MATLAB code to
calculate redundancy. Research reported in this publication was supported by
the National Institute On Aging of the National Institutes of Health under
Award Number ROTAG062590. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the National
Institutes of Health. Data collection and sharing for this project was funded by
the ADNI (National Institutes of Health Grant U0O1 AG024904) and DOD ADNI
(Department of Defense award number W81XWH-12-2-0012). ADNI is funded
by the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, and through generous contributions from the
following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery
Foundation; Araclon Biotech; BioClinica, Inc,; Biogen; Bristol-Myers Squibb
Company; CereSpir, Inc,; Cogstate; Eisai Inc; Elan Pharmaceuticals, Inc,; Eli Lilly
and Company; Eurolmmun; F. Hoffmann-La Roche Ltd and its affiliated
company Genentech, Inc, Fujirebio; GE Healthcare; IXICO Ltd; Janssen
Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson
Pharmaceutical Research & Development LLC; Lumosity; Lundbeck; Merck &
Co., Inc; Meso Scale Diagnostics, LLC; NeuroRx Research; Neurotrack
Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc; Piramal
Imaging; Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research is providing funds to
support ADNI clinical sites in Canada. Private sector contributions are facilitated
by the Foundation for the National Institutes of Health (www.fnih.org). The

Page 11 of 12

grantee organization is the Northern California Institute for Research and
Education, and the study is coordinated by the Alzheimer's Therapeutic
Research Institute at the University of Southern California. ADNI data are
disseminated by the Laboratory for Neuro Imaging at the University of
Southern California.

Author details

'Department of Psychology and Neuroscience, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA. Biomedical Research Imaging Center,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 3’Department
of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA. “Department of Applied Physical Sciences, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA. 5Department of Radiology, University of North
Carolina at Chapel Hill, Chapel Hill, NC, USA

Author contributions

SL. conducted the data analysis supervised by ED. MUS, PJM, and KSG.
contributed to data interpretation. SL. prepared the original draft of the
manuscript with contributions from E.D. and revisions from M.US, PJM, and KS.G.

Data availability

Neuroimaging and cognitive data are available at http://adniloni.usc.edu/. The
datasets generated in the current study are available from the corresponding
author upon reasonable request. Data used in preparation of this article were
obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or provided data
but did not participate in analysis or writing of this report. A complete listing of
ADNI investigators can be found at http://adniloni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/541398-020-01166-w).

Received: 20 July 2020 Revised: 7 December 2020 Accepted: 10 December
2020

Published online: 18 January 2021

References

1. Nichols, E. et al. Global, regional, and national burden of Alzheimer's disease
and other dementias, 1990-2016: a systematic analysis for the Global Burden
of Disease Study 2016. Lancet Neurol. 18, 88-106 (2019).

2. Nelson, P. T. et al. Correlation of Alzheimer disease neuropathologic changes
with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 71,
362-381 (2012).

3. Aisen, P.S. et al. Clinical core of the Alzheimer's Disease Neuroimaing Initiative:
Progress and plans. Alzheimer's Dement. 6, 239-246 (2010).

4. Petersen, R C. et al. Practice guideline update summary: mild cognitive
impairment report of theguideline development, dissemination, and imple-
mentation. Neurology 90, 126-135 (2018).

5. Jack C. R et al. Tracking pathophysiological processes in Alzheimer's disease:
an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12,
207-216 (2013).

6. Cabeza, R. et al. Maintenance, reserve and compensation: the cognitive
neuroscience of healthy ageing. Nat. Rev. Neurosci. 19, 701-710 (2018).

7. Montine, T. J. et al. Concepts for brain aging: resistance, resilience, reserve, and
compensation. Alzheimer’s Res. Ther. 11, https//doi.org/10.1186/513195-019-
0479y (2019).

8. Stern, Y, Bamnes, C. A, Grady, C, Jones, R. N. & Raz, N. Brain reserve, cognitive
reserve, compensation, and maintenance: operationalization, validity, and
mechanisms of cognitive resilience. Neurobiol. Aging 83, 124-129 (2019).


http://www.fnih.org
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1038/s41398-020-01166-w
https://doi.org/10.1038/s41398-020-01166-w
https://doi.org/10.1186/s13195-019-0479-y
https://doi.org/10.1186/s13195-019-0479-y

Langella et al. Translational Psychiatry (2021)11:61

20.

21,

22.

23.

24.

25.

26.

27.

28.

29.

Tononi, G, Sporns, O. & Edelman, G. M. Measures of degeneracy and
redundancy in biological networks. Proc. Natl Acad. Sci. USA 96, 3257-3262
(1999).

Navlakha, S, He, X, Faloutsos, C. & Bar-Joseph, Z. Topological properties of
robust biological and computational networks. J. R. Soc. Interface. 11, https//
doi.org/10.1098/rsif.2014.0283 (2014).

Billinton, R. & Allan, R. N. Reliability Evaluation of Engineering Systems (Springer,
Boston, 1992).

Glassman, R. B. An hypothesis about redundancy and reliability in the brains of
higher species: analogies with genes, internal organs, and engineering sys-
tems. Neurosci. Biobehav. Rev. 11, 275-285 (1987).

Pitkow, X. & Angelaki, D. E. Inference in the brain: statistics flowing in
redundant population codes. Neuron 94, 943-953 (2017).

Nguyen, A. T, Xu, J, Luu, D. K, Zhao, Q. & Yang, Z. Advancing system per-
formance with redundancy: from biological to artificial designs. Neural Com-
put. 31, 555-573 (2019).

Di Lanzo, C, Marzetti, L, Zappasodi, F, De Vico Fallani, F. & Pizzella, V.
Redundancy as a graph-based index of frequency specific MEG functional
connectivity. Comput. Math. Methods Med. 2012, 1-9 (2012).

Leistritz, L. et al. Network redundancy analysis of effective brain networks; a
comparison of healthy controls and patients with major depression. PLoS ONE
8, https.//doi.org/10.1371/journal pone.0060956 (2013).

Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10, 186-198 (2009).
Rubinov, M. & Sporns, O. Complex network measures of brain connectivity:
uses and interpretations. Neuroimage 52, 1059-1069 (2010).

Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353-364
(2017).

Aittokallio, T. & Schwikowski, B. Graph-based methods for analysing networks
in cell biology. Brief. Bioinformatics 7, 243-255 (2006).

Arkadir, D, Bergman, H. & Fahn, S. Redundant dopaminergic activity may
enable compensatory axonal sprouting in Parkinson disease. Neurology 82,
1093-1098 (2014).

Harris, J. A. et al. Transsynaptic progression of amyloid-b-induced neuronal
dysfunction within the entorhinal-hippocampal network. Neuron 68, 428-441
(2010).

Gallagher, M. & Koh, M. T. Episodic memory on the path to Alzheimer's
disease. Curr. Opin. Neurobiol. 21, 929-934 (2011).

Aisen, P. S, Petersen, R. C, Donohue, M. & Weiner, M. W. Alzheimer's disease
neuroimaging initiative 2 clinical core: progress and plans. Alzheimer Dement.
11, 734-739 (2015).

Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity
toolbox for correlated and anticorrelated brain networks. Brain Connect. 2,
125-141 (2012).

Seitzman, B. A. et al. A set of functionally-defined brain regions with improved
representation of the subcortex and cerebellum. Neuroimage. 206, https://doi.
0rg/10.1016/j.neuroimage.2019.116290 (2020).

Badhwar, A. P. et al. Resting-state network dysfunction in Alzheimer’s disease: a
systematic review and meta-analysis. Alzheimers Dement. 8, 73-85 (2017).
Arnaiz, E. & Almkvist, O. Neuropsychological features of mild cognitive
impairment and preclinical alzheimer’s disease. Acta Neurol. Scand. 107, 34-41
(2003).

Gibbons, L. E. et al. Composite measures of executive function and memory:
ADNI_EF and ADNI_Mem. Alzheimers Dis. Neuroimag. Initiative, https://adni.
bitbucket.io/reference/docs/UWNPSYCHSUM/ADNI_Methods_UWN
PSYCHSUM.pdf (2015).

30.

34.

35.

36.

37.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

Page 12 of 12

Crane, P. K et al. Development and assessment of a composite score for
memory in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Brain.
Imaging. Behav. 6, 502-516 (2012).

Frossard, J. & Renaud, O. permuco: Permutation tests for regression (repeated
measures) ANOVA/ANCOVA and comparison of signals, https.//cran.r-project.
org/package=permuco (2019).

Torchiano, M. Efficient Effect Size Computation, https//cranr-projectorg/web/
packages/effsize/ (2020).

Ripley, B. Robust Fitting of Linear Models,
package=rim (2020).

Maechler, M. Utilities from ‘Seminar fuer Statistik’ ETH Zurich, http.//cran.r-project.
org/web/packages/sfsmic (2020).

van den Heuvel, M. P. et al. Proportional thresholding in resting-state fMRI
functional connectivity networks and consequences for patient-control con-
nectome studies: issues and recommendations. Neuroimage 152, 437-449
(2017).

Driscoll, I et al. Impact of Alzheimer's pathology on cognitive trajectories in
nondemented elderly. Ann. Neurol. 60, 688-695 (2006).

Driscoll, I. & Troncoso, J. Asymptomatic Alzheimer's disease: a prodrome or a
state of resilience? Curr. Alzheimer Res. 8, 330-335 (2011).

Fanselow, M. S. & Dong, H-W. Are the dorsal and ventral hippocampus
functionally distinct structures? Neuron 65, 7-19 (2010).

Ranganath, C. & Ritchey, M. Two cortical systems for memory- guided
behaviour. Nat. Rev. Neurosci. 13, 713726 (2012).

Buckner, R. L, Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default net-
work: Anatomy, function, and relevance to disease. Ann. N. Y Acad. Sci. 1124,
1-38 (2008).

Koch, W. et al. Diagnostic power of default mode network resting state
fMRI in the detection of Alzheimer's disease. Neurobiol. Aging 33, 466-478
(2012).

Mohan, A. et al. The significance of the Default Mode Network (DMN) in
neurological and neuropsychiatric disorders: a review. Yale J. Biol. Med. 89,
49-57 (2016).

Shohamy, D. & Turk-Browne, N. B. Mechanisms for widespread hippo-
campal involvement in cognition. J. Exp. Psychol. Gen. 142, 1159-1170
(2013).

Clark, R. E. & Squire, L. R. Similarity in form and function of the hippocampus in
rodents, monkeys, and humans. Proc. Natl Acad. Sci. USA 110, 10365-10370
(2013).

Eichenbaum, H. On the integration of space, time, and memory. Neuron 95,
1007-1018 (2017).

Poppenk, J, Evensmoen, H. R, Moscovitch, M. & Nadel, L. Long-axis spe-
cialization of the human hippocampus. Trends Cogn. Sci. 17, 230-240
(2013).

Koen, J. D. & Yonelinas, A. P. The effects of healthy aging, amnestic mild
cognitive impairment, and Alzheimer's disease on recollection and
familiarity: a meta-analytic review. Neuropsychol. Rev. 24, 332-354
(2014).

Escandon, A, Al-Hammadi, N. & Galvin, J. E. Effect of cognitive fluctuation on
neuropsychological performance in aging and dementia. Neurology 74,
210-217 (2010).

Salthouse, T. A. Influence of age on practice effects in longitudinal neuro-
cognitive change. Neuropsychology 24, 563-572 (2010).

Jack, C. R. Jr. et al. NIA-AA research framework: toward a biological
definition of Alzheimer's disease. Alzheimers Dement. 14, 535-562
(2018).

https//cran.r-projectorg/


https://doi.org/10.1098/rsif.2014.0283
https://doi.org/10.1098/rsif.2014.0283
https://doi.org/10.1371/journal.pone.0060956
https://doi.org/10.1016/j.neuroimage.2019.116290
https://doi.org/10.1016/j.neuroimage.2019.116290
https://adni.bitbucket.io/reference/docs/UWNPSYCHSUM/ADNI_Methods_UWNPSYCHSUM.pdf
https://adni.bitbucket.io/reference/docs/UWNPSYCHSUM/ADNI_Methods_UWNPSYCHSUM.pdf
https://adni.bitbucket.io/reference/docs/UWNPSYCHSUM/ADNI_Methods_UWNPSYCHSUM.pdf
https://cran.r-project.org/package=permuco
https://cran.r-project.org/package=permuco
https://cran.r-project.org/web/packages/effsize/
https://cran.r-project.org/web/packages/effsize/
https://cran.r-project.org/package=rlm
https://cran.r-project.org/package=rlm
http://cran.r-project.org/web/packages/sfsmic
http://cran.r-project.org/web/packages/sfsmic

	Lower functional hippocampal redundancy in mild cognitive impairment
	Introduction
	Materials and methods
	Dataset
	Image acquisition and preprocessing
	Matrix construction and calculations of network measures
	Redundancy
	Degree
	Global efficiency

	Cognition
	Participant characteristics
	Statistical analysis
	Group comparisons
	Nodal ratios
	Redundancy regressions


	Results
	Lower hippocampal redundancy in MCI
	Hippocampal redundancy is related to memory but not EF
	Specificity of redundancy as a topological property
	Redundancy does not come at the cost of efficiency

	Discussion
	Acknowledgements




